


If A and B are both m × n matrices then the sum of A and B, 

denoted A + B, is a matrix obtained by adding corresponding

elements of A and B.  
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If A and B are both m × n matrices then the sum of A and B, 

denoted A + B, is a matrix obtained by adding corresponding

elements of A and B.  
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If A is an m × n matrix and s is a scalar, then we let kA denote the 

matrix obtained by multiplying every element of A by k.  This 

procedure is called scalar multiplication.

   
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PROPERTIES OF SCALAR MULTIPLICATION



The m × n zero matrix, denoted 0, is the m × n 

matrix whose elements are all zeros.
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The multiplication of matrices is easier shown than put 

into words.  You multiply the rows of the first matrix 

with the columns of the second adding products
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Find AB

First we multiply across the first row and down the 

first column adding products.  We put the answer in 

the first row, first column of the answer.

 23    1223          5311223 
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Find AB

We multiplied across first row and down first column 

so we put the answer in the first row, first column.
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Now we multiply across the first row and down the second 

column and we’ll put the answer in the first row, second 

column.

  43     3243          7113243 
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Now we multiply across the second row and down the first 

column and we’ll put the answer in the second row, first 

column.
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Now we multiply across the second row and down the 

second column and we’ll put the answer in the second row, 

second column.

  40     3440          11113440 
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Notice the sizes of A and B and the size of the product AB.



To multiply matrices A and B 
look at their dimensions

pnnm 

MUST BE SAME 

SIZE OF PRODUCT 

If the number of columns of A does not 

equal the number of rows of B then the 

product AB is undefined.





















6

BA



















126

BA















 



2126

BA





















 3

2126

BA





















 143

2126

BA





















 4143

2126

BA

























9

4143

2126

BA

























109

4143

2126

BA

























4109

4143

2126

BA

Now let’s look at the product BA.
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BAAB 

2332
across first row as 

we go down first 

column:

      60432 

across first row as 

we go down 

second column:

      124422 

across first row as 

we go down third 

column:

      21412 

across second row 

as we go down 

first column:

      30331 

across second row 

as we go down 

second column:

      144321 

across second row   

as we go down 

third column:

      41311 

across third row   

as we go down 

first column:

      90133 

across third row   

as we go down 

second column:

      104123 

across third row   

as we go down 

third column:

      41113 

Completely different than AB!

Commuter's Beware!
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PROPERTIES OF MATRIX 

MULTIPLICATION

BAAB 
Is it possible for AB = BA ?,yes it is possible.



an n  n matrix with ones on the main diagonal 

and zeros elsewhere
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Multiplying a 

matrix by the 

identity gives the 

matrix back again.
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Let A be an n n matrix.  If there exists a matrix B 

such that AB = BA = I then we call this matrix the 

inverse of A and denote it A-1.
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Can we find a matrix to multiply the first matrix by to 

get the identity?



If A has an inverse we say that A is nonsingular.    

If A-1 does not exist we say A is singular.

To find the inverse of a matrix we put the matrix A, a 

line and then the identity matrix.  We then perform row 

operations on matrix A to turn it into the identity.  We 

carry the row operations across and the right hand side 

will turn into the inverse.

To find the inverse of a matrix we put the matrix A, a 

line and then the identity matrix.  We then perform row 

operations on matrix A  to turn it into the identity.  We 

carry the row operations across and the right hand side 

will turn into the inverse.













72

31
A










 1210

0131
2r1+r2










 1072

0131










 1210

0131

r2










 1210

3701r1  r2















72

31
A













12

37
1A

Check this answer by multiplying.  We should 

get the identity matrix if we’ve found the 

inverse.
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We can use A-1 to solve a system of equations

352

13





yx

yx

bx A

To see how, we can re-write a 

system of equations as matrices.

coefficient 

matrix
variable 

matrix

constant 

matrix










52

31










y

x










3

1



bx
1 A

bx 11   AAA

bx A left multiply both sides 

by the inverse of A

This is just the identity

bx
1 AI

but the identity times a 

matrix just gives us 

back the matrix so we 

have:This then gives us a formula 

for finding the variable 

matrix:  Multiply A inverse 

by the constants.
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This is the 

answer to 

the system

x

y



Your calculator can compute inverses and 

determinants of matrices.  To find out how, refer to 

the manual or click here to check out the website.

http://www.prenhall.com/divisions/esm/app/graphing/ti83/Home_Screen/Menu_Keys/Matrix/matrix.html
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